唐赟 博士、教授、博士生导师
男,湖南衡阳人,1968年7月生。1991年7月毕业于同济大学化学系,获理学学士学位;1996年7月毕业于中国科学院上海药物研究所,获理学博士学位。1996年10月至2000年3月在瑞典卡罗林医学院(Karolinska Institute)进行博士后研究,2000年3月至2002年2月在美国国家卫生研究院(NIH)癌症研究所(NCI)进行访问研究,2002年3月起进入加拿大的生物制药公司工作,先后在GlycoDesign Inc.和MDS Proteomics Inc.任职研究员。2004年5月作为引进人才回国,任复旦大学教授。2004年9月起应邀进入华东理工大学工作,参与药学院创建及学科建设。2005年入选上海市首批“浦江人才计划”,2008年入选教育部“新世纪优秀人才支持计划”。2006-2015年曾任药学院副院长,现任药学院教授、博士生导师。主要学术兼职有:中国化学会计算机化学专业委员会委员,中国毒理学会计算毒理专业委员会委员,中国生物信息学会(筹)生物信息学与药物发现专业委员会副主任委员,上海市毒理学会理事,上海市药学会药物化学专业委员会委员,上海市新药设计重点实验室学术委员会委员,《华东理工大学学报(自然科学版)》编委,美国化学会期刊J. Chem. Inf. Model.编委。
研究专长为计算机辅助药物设计、化学信息学、网络药理学、计算毒理学、计算生物学等,主要采用计算机和人工智能技术开展药物设计方法和应用研究,在国内外具有较高知名度。目前新药研发的瓶颈问题有二:一是靶标数量少,二是分子成药性差,因此我们致力于解决这些问题。首先我们基于系统生物学和网络药理学原理,发展了基于网络推理系列算法(NBI、SDTNBI、bSDTNBI和wSDTNBI等),并构建了在线预测系统NetInfer (https://lmmd.ecust.edu.cn/netinfer/),用于药物潜在靶标预测、活性化合物机制阐明、基于网络虚拟筛选等,其优点是无需已知靶标三维结构,因而大大扩展了可预测靶标的范围,受到国内外同行高度关注,原始论文已被引用近700次。其次我们采用人工智能技术和多模态分子表征方法,发展了分子成药性预测方法,不但构建了相关数据库及各类ADMET性质预测模型,而且发展了ADMET性质优化方法,并进一步构建了免费的ADMET在线预测和优化平台admetSAR (https://lmmd.ecust.edu.cn/admetsar3/),被包括DrugBank在内的国内外众多用户广泛使用,原始论文已被引用超过1500次,2019年升级到2.0版的论文已被引用超过800次,最近又升级到3.0版。这些研究使得本人2020-2023连续4年入选爱思唯尔“中国高被引学者”榜单和全球“前2%顶尖科学家”榜单。所发展的方法不但可用于新药研发,还可用于生态环境风险评估,具有广阔的应用前景。已主持完成国家自然科学基金面上项目5项,目前正主持国家自然科学基金区域创新发展联合基金重点项目1项、国家重点研发计划课题1项、国家自然科学基金面上项目1项,已在Nucleic Acids Research, Briefings in Bioinformatics, Journal of Cheminformatics, J. Chem. Inf. Model., Computers in Biology and Medicine等国内外专业期刊发表SCI论文300余篇,申请中国发明专利15项(其中授权7项),获得计算机软件著作权19项。
负责并主讲药学本科专业核心课程《药物设计学》(2023年入选上海高校一流本科课程)和选修课程《新药研发原理与案例》,生物医药工科试验班专业选修课程《药物设计与新药发现-小分子药物》,负责并主讲硕士生学位课程《计算机辅助药物设计》等。独立编著教材《药物设计学》,2020年4月由化学工业出版社出版,2022年11月获得中国石油和化学工业优秀出版物奖-优秀教材一等奖;主编教材《药学专业实验》,2020年8月由化学工业出版社出版;此外还主编、参编教材、专著和译著10余本。已指导本科毕业论文100余名,硕士毕业生70余名,博士毕业生30余名,博士后出站5名。
曾获得1997年中国科学院自然科学二等奖(第六完成人)。2009年获得上海市育才奖;2010年获得华东理工大学第二届“我心目中的良师益友”奖和宝钢优秀教师奖;2013年获得上海市教学成果一等奖(第四完成人);2016年获得校教书育人奖;2022年获得药明康德生命化学研究奖;2023年获得化学工业出版社优秀作者荣誉称号;2024年获得中国石油教育学会石油高等教育教学成果一等奖(第三完成人),以及华东理工大学首届研究生“文明导学团队”提名奖。
分子模拟与设计实验室简介 (实验室主页:http://lmmd.ecust.edu.cn/)
本研究领域常用网络资源
本研究领域常用专业期刊
热烈欢迎具有较好计算机技能和数理基础、有志于从事计算机辅助药物设计研究的同学报考本实验室的硕士、博士研究生(包括推荐免试生),或者联系进行博士后研究!
代表性论著(引用次数截至2024年12月30日):
1. Yu QL, Zhang ZX, Liu GX, Li WH, Tang Y*. ToxGIN: An in silico prediction model for peptide toxicity via graph isomorphism networks integrating protein sequence and structure information. Briefings in Bioinformatics, 2024, 25(6): bbae583. DOI: 10.1093/bib/bbae583
2. Pan F#, Wang CN#, Yu ZH#, Wu ZR, Wang Z, Lou S, Li WH, Liu GX, Li T*, Zhao YZ, Tang Y*. NADPHnet: a novel strategy to predict compounds for regulation of NADPH metabolism via network-based methods. Acta Pharmacologica Sinica, 2024, 45(10): 2199-2211. DOI: 10.1038/s41401-024-01324-6
3. Zhu KY, Huang MT, Wang YM, Gu YX, Li WH, Liu GX, Tang Y*. MetaPredictor: in silico prediction of drug metabolites based on deep language models with prompt engineering. Briefings in Bioinformatics, 2024, 25(5): bbae374. DOI: 10.1093/bib/bbae374(已被引1次)
4. Gu YX#, Yu ZH#, Wang YM#, Chen L, Lou CF, Yang C, Li WH, Liu GX, Tang Y*. admetSAR3.0: a comprehensive platform for exploration, prediction and optimization of chemical ADMET properties. Nucleic Acids Research, 2024, 52(W1): W432-W438. DOI: 10.1093/nar/gkae298(已被引12次)
5. Yu ZH#, Wu ZR#, Wang Z, Wang YM, Zhou MR, Li WH, Liu GX, Tang Y*. Network-based methods and their applications in drug discovery (Invited Review). J. Chem. Inf. Model., 2024, 64(1): 57-75. DOI: 10.1021/acs.jcim.3c01613. (已被引6次)
6. Gu YX, Wang YM, Zhu KY, Li WH, Liu GX, Tang Y*. DBPP-Predictor: a novel strategy for prediction of chemical drug-likeness based on property profiles. Journal of Cheminformatics, 2024, 16: 4. DOI: 10.1186/s13321-024-00800-9.(已被引2次)
7. Yu ZH, Wu ZR*, Zhou MR, Chen L, Li WH, Liu GX, Tang Y*. mtADENet: a novel interpretable method integrating multiple types of network-based inferences for prediction of adverse drug events. Computers in Biology and Medicine, 2024, 168: 107831. DOI: 10.1016/j.compbiomed.2023.107831(已被引2次)
8. Yu ZH, Wu ZR*, Zhou MR, Cao KJ, Li WH, Liu GX, Tang Y*. EDC-Predictor: a novel strategy for prediction of endocrine-disrupting chemicals by integrating pharmacological and toxicological profiles. Environmental Science & Technology, 2023, 57(46): 18013-18025. DOI: 10.1021/acs.est.2c08558 (已被引12次)
9. Zheng LL#, Zhu B#, Wu ZR, Guo M, Chen JY, Hong MH, Liu GX, Li WH, Ren GB*, Tang Y*. Pharmaceutical cocrystal discovery via 3D-SMINBR: a new network recommendation tool augmented by molecular 3D conformations. J. Chem. Inf. Model., 2023, 63(14): 4301-4311. DOI: 10.1021/acs.jcim.3c00066(已被引1次)
10. Zhou MR, Sun JM, Yu ZH, Wu ZR, Li WH, Liu GX, Ma L*, Wang R*, Tang Y*. Investigation of anti-Alzheimer mechanisms of sarsasapogenin derivatives by network-based combining structure-based methods. J. Chem. Inf. Model., 2023, 63(9): 2881-2894. DOI: 10.1021/acs.jcim.3c00018(已被引3次)
11. Deng H, Ding M, Wang YM, Liu GX, Li WH, Tang Y*. ACP-MLC: a two-level prediction engine for identification of anticancer peptides and multi-label classification of their functional types. Computers in Biology and Medicine, 2023, 158: 106844. DOI: 10.1016/j.compbiomed.2023.106844(已被引14次)
12. Lou CF, Yang HB, Deng H, Huang MT, Li WH, Liu GX, Lee PW, Tang Y*. Chemical rules for optimization of chemical mutagenicity via matched molecular pairs analysis and machine learning methods. Journal of Cheminformatics, 2023, 15: 35. DOI: 10.1186/s13321-023-00707-x(已被引6次)
13. Chen L, Zhang BB, Wu ZR, Liu GX, Li WH, Tang Y*. In silico discovery of aptamers with an enhanced library design strategy. Computational and Structural Biotechnology Journal, 2023, 21: 1005-1013. DOI: 10.1016/j.csbj.2023.01.002(已被引10次)
14. Wang JY#, Lou CF#, Liu GX, Li WH, Wu ZR*, Tang Y*. Profiling prediction of nuclear receptor modulators with multi-task deep learning methods: toward the virtual screening. Briefings in Bioinformatics, 2022, 23(5): bbac351. DOI: 10.1093/bib/bbac351(已被引8次)
15. Deng H, Lou CF, Wu ZR, Li WH, Liu GX, Tang Y*. Prediction of anti-inflammatory peptides by a sequence-based stacking ensemble model named AIPStack. iScience, 2022, 25(9): 104967. DOI: 10.1016/j.isci.2022.104967 (已被引17次)
16. Lou CF, Yang HB, Wang JY, Huang MT, Li WH, Liu GX, Lee PW, Tang Y*. IDL-PKopt: a novel strategy for prediction and optimization of human plasma protein binding of compounds via an interpretable deep learning method. J. Chem. Inf. Model., 2022, 62(11): 2788-2799. DOI: 10.1021/acs.jcim.2c00297 (已被引用11次)
17. Peng YY, Wang JY, Wu ZR*, Zheng LL, Wang BT, Liu GX, Li WH, Tang Y*. MPSM-DTI: prediction of drug-target interaction via machine learning based on chemical structure and protein sequence. Digital Discovery, 2022, 1: 115-126. DOI: 10.1039/D1DD00011J
18. Yu ZH, Wu ZR*, Li WH, Liu GX, Tang Y*. ADENet: a novel network-based inference method for prediction of drug adverse events. Briefings in Bioinformatics, 2022, 23(2): bbab580. DOI: 10.1093/bib/bbab580 (已被引6次)
19. Wu ZR#, Ma H#, Liu ZH#, Zheng LL, Yu ZH, Cao SY, Fang WQ, Wu LL, Li WH, Liu GX, Huang J*, Tang Y*. wSDTNBI: a novel network-based inference method for virtual screening. Chemical Science, 2022, 13(4): 1060-1079. DOI: 10.1039/D1SC05613A (已被引用14次)
20. Zheng LL#, Zhu B#, Wu ZR, Liang F, Hong MH, Liu GX, Li WH, Ren GB*, Tang Y*. SMINBR: an integrated network and chemoinformatics tool specialized for prediction of multi-component crystal formation. J. Chem. Inf. Model., 2021, 61(9): 4290-4302. DOI: 10.1021/acs.jcim.1c00601 (已被引6次)
21. Yu ZH, Wu ZR*, Li WH, Liu GX, Tang Y*. MetaADEDB 2.0: a comprehensive database on adverse drug events. Bioinformatics, 2021, 37(15): 2221-2222. DOI: 10.1093/bioinformatics/btaa973 (已被引用10次)
22. Peng YY#, Wang MJ#, Xu YX#, Wu ZR, Wang JY, Zhang C, Liu GX, Li WH, Li J*, Tang Y*. Drug repositioning by prediction of drug’s anatomical therapeutic chemical code via network-based inference approaches. Briefings in Bioinformatics, 2021, 22(2): 2058-2072. DOI: 10.1093/bib/bbaa027 (已被引用25次)
23. Wu ZR, Peng YY, Yu ZH, Li WH, Liu GX, Tang Y*. NetInfer: a web server for prediction of targets, therapeutic and adverse effects via network-based inference methods. J. Chem. Inf. Model., 2020, 60(8): 3687-3691. DOI: 10.1021/acs.jcim.0c00291 (已被引用28次)
24. Yang HB, Lou CF, Li WH, Liu GX, Tang Y*. Computational approaches to identify structural alerts and their applications in environmental toxicology and drug discovery. (Invited Review) Chem. Res. Toxicol., 2020, 33(6): 1312-1322. DOI: 10.1021/acs.chemrestox.0c00006 (已被引用59次)
25. Cai YC, Yang HB, Li WH, Liu GX, Lee PW, Tang Y*. Computational prediction of site of metabolism for UGT-catalyzed reactions. J. Chem. Inf. Model., 2019, 59(3): 1085-1095. DOI: 10.1021/acs.jcim.8b00851 (已被引用21次)
26. Sun LX, Yang HB, Cai YC, Li WH, Liu GX, Tang Y*. In silico prediction of endocrine disrupting chemicals using single-label and multi-label models. J. Chem. Inf. Model., 2019, 59(3): 973-982. DOI: 10.1021/acs.jcim.8b00551 (已被引用23次)
27. Yang HB, Lou CF, Sun LX, Li J, Cai YC, Wang Z, Li WH, Liu GX, Tang Y*. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 2019, 35(6): 1067-1069. (已被引用802次) ESI高被引论文
28. Guan LF, Yang HB, Cai YC, Sun LX, Di PW, Li WH, Liu GX, Tang Y*. ADMET-score – a comprehensive scoring function for evaluation of chemical ADMET properties. MedChemComm, 2019, 10(1): 148-157. (已被引用348次) ESI高被引论文
29. Yang HB, Sun LX, Wang Z, Li WH, Liu GX, Tang Y*. ADMETopt: a web server for ADMET optimization in drug design via scaffold hopping. J. Chem. Inf. Model., 2018, 58(10): 2051-2056.(已被引62次)
30. Wu ZR, Li WH, Liu GX, Tang Y*. Network-based methods for prediction of drug-target interactions. (Invited Review) Frontiers in Pharmacology, 2018, 9: 1134.(已被引110次)
31. Yang HB, Sun LX, Li WH, Liu GX, Tang Y*. In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. (Invited Review) Frontiers in Chemistry, 2018, 6: 30.(已被引167次)
32. Wu ZR#, Lu WQ#, Yu WW, Wang TDY, Li WH, Liu GX, Zhang HK, Pang XF, Huang J, Liu MY*, Cheng FX*, Tang Y*. Quantitative and systems pharmacology. 2. In silico polypharmacology of G protein-coupled receptor ligands via network-based approaches. Pharmacological Research, 2018, 129: 400-413.(已被引用24次)
33. Fang JS#, Wu ZR#, Cai CP, Wang Q, Tang Y*, Cheng FX*. Quantitative and systems pharmacology. 1. In silico prediction of drug-target interaction of natural products enables new targeted cancer therapy.J. Chem. Inf. Model., 2017, 57(11): 2657-2671.(已被引用67次)
34. Wu ZR, Cheng FX*, Li J, Li WH, Liu GX, Tang Y*. SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning. Briefings in Bioinformatics, 2017, 18(2): 333-347. (已被引用108次)
35. Wu ZR#, Lu WQ#, Wu D, Luo AQ, Bian HP, Li J, Li WH, Liu GX, Huang J*, Cheng FX*, Tang Y*. In silico prediction of chemical mechanism-of-action via an improved network-based inference method. British Journal of Pharmacology, 2016, 173(23): 3372-3385. (已被引用65次)
36. Li J, Lei KC, Wu ZR, Li WH, Liu GX, Liu JW*, Cheng FX*, Tang Y*. Network-based identification of microRNAs as potential pharmacogenomic biomarkers for anticancer drugs. Oncotarget, 2016, 7(29): 45584-45596. DOI: 10.18632/oncotarget.10052 (已被引用73次)
37. Zhang C, Cheng FX, Sun L, Zhuang SL, Li WH, Liu GX, Lee PW*, Tang Y*. In silico prediction of chemical toxicity on avian species using chemical category approaches. Chemosphere, 2015, 122: 280-287.(已被引用41次)
38. Li X, Li WH, Liu GX, Shen X, Tang Y*. Association between cigarette smoking and Parkinson's disease: a meta-analysis. Archives of Gerontology and Geriatrics, 2015, 61: 510-516. DOI: 10.1016/j.archger.2015.08.004(已被引用127次)
39. Li X#, Chen L#, Cheng FX, Wu ZR, Bian HP, Xu CY, Li WH, Liu GX, Shen X, Tang Y*. In silico prediction of chemical acute oral toxicity using multi-classification methods. J. Chem. Inf. Model., 2014, 54(4): 1061-1069.(已被引用152次)
40. Cheng FX, Li WH, Liu GX, Tang Y*. In silico ADMET prediction: recent advances, current challenges and future trends. Curr. Top. Med. Chem., 2013, 13(11): 1273-1289. (已被引用187次)
41. Cheng FX, Li WH, Wu ZR, Wang XC, Zhang C, Li J, Liu GX, Tang Y*. Prediction of polypharmacological profiles of drugs by the integration of chemical, side effects and therapeutic space. J. Chem. Inf. Model., 2013, 53(4): 753-762.(已被引用85次)
42. Hu GP#, Li X#, Zhang X#, Li YZ, Ma L, Yang LM, Liu GX, Li WH, Huang J*, Shen X, Hu LH*, Zheng YT*, Tang Y*. Discovery of inhibitors to block interactions of HIV-1 integrase with human LEDGF/p75 via structure-based virtual screening and bioassays.J. Med. Chem., 2012, 55(22): 10108-10117.(已被引用39次)
43. Cheng FX, Zhou YD, Li WH, Shen J, Wu ZR, Liu GX, Lee PW, Tang Y*. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11): 3099-3105.(已被引用1519次)ESI高被引论文
44. Xu CY, Cheng FX, Chen L, Du Z, Li WH, Liu GX*, Lee PW, Tang Y*. In silico prediction of chemical Ames mutagenicity. J. Chem. Inf. Model., 2012, 52(11): 2840-2847.(已被引用169次)
45. Hu GP, Kuang GL, Xiao W, Li WH, Liu GX, Tang Y*. Performance evaluation of 2D fingerprint and 3D shape similarity methods in virtual screening. J. Chem. Inf. Model., 2012, 52(5): 1103-1113.(已被引用103次)
46. Cheng FX#, Liu C#, Jiang J, Lu WQ, Li WH, Liu GX, Zhou WX*, Huang J*, Tang Y*. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol., 2012, 8(5): e1002503.(已被引用668次)ESI高被引论文
47. Cheng FX, Yu Y, Shen J, Yang L, Li WH*, Liu GX, Lee PW, Tang Y*. Classification of cytochrome P450 inhibitors and non-inhibitors using combined classifiers. J. Chem. Inf. Model., 2011, 51(5): 996-1011.(已被引用170次)
48. Cheng FX, Shen J, Yu Y, Li WH, Liu GX, Lee PW, Tang Y*. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods. Chemosphere, 2011, 82(11): 1636-1643.(已被引用79次)
49. Shen J#, Tan CF#, Zhang YY, Li X, Li WH, Huang J*, Shen X, Tang Y*. Discovery of potent ligands for estrogen receptor by structure-based virtual screening. J. Med. Chem.,2010, 53(14): 5361-5365.(已被引用47次)
50. Shen J, Cheng FX, Xu Y, Li WH*, Tang Y*. Estimation of ADME properties with substructure pattern recognition. J. Chem. Inf.Model., 2010, 50(6): 1034-1041.(已被引用284次)
联系方式
通讯地址:上海市梅陇路130号268信箱,邮编200237
电话:(021)64251052
传真:(021)64251033
电邮:ytang234 at ecust.edu.cn