|
赵玉政 教授 博士生导师
E-mail: yuzhengzhao@ecust.edu.cn
通讯地址:上海市徐汇区梅陇路130号;邮编:200237
【个人简介】:
赵玉政,教授,博士生导师,北京协和医院博士生导师,上海市细胞代谢光遗传学技术前沿科学研究基地主任,中国医学科学院细胞代谢监测成像新技术创新单元主任,教育部国家级高层次人才(2021),国家重点研发计划首席科学家(2019),教育部国家级青年人才(2017),国家优秀青年科学基金获得者(2017),国家自然科学基金创新研究群体核心成员,中国细胞生物学学会细胞代谢专业委员会委员,中国生物化学与分子生物学会代谢专业委员会委员,中国细胞生物学学会衰老细胞生物学专业委员会委员,中国老年学和老年医学学会抗衰老分会委员,中国老年学和老年医学学会老年病学分会衰老基础医学专家委员会常务委员,中国抗癌协会肿瘤代谢专业委员会委员,中国医药生物技术协会神经修复与再生专业委员会委员,中国衰老标志物研究联合体专家委员会委员,中国研究型医院学会过敏医学专业委员会副主任委员,长三角现代产业学院协同育人联盟生物医药专家委员会副主任委员,上海市生物化学与分子生物学学会副理事长,上海市细胞生物学学会理事,上海市产医融合战略咨询委员会委员,上海市产医融合战略咨询委员会肿瘤治疗专业委员会委员等。
2007年7月获山东大学理学学士学位,2012年6月获华东理工大学工学博士学位并留校任教,历任讲师、副教授、研究员,现为华东理工大学教授。主要成果发表在Nature Methods、Cell Metabolism (4篇)、Nature Metabolism (2篇)、Nature Structural & Molecular Biology (2篇)、Nature Protocols (3篇)、Developmental Cell、Science Advances (2篇)、Cell Reports、PNAS、Blood、Trends in Cell Biology等国际权威期刊,编写英文著作Methods in Enzymology1个章节。已申请50余项中国发明专利(授权20项)和10余项国际发明专利(授权3项),获教育部自然科学一等奖(2020)、上海青年科技英才奖(2018)、上海市青少年科技创新“市长”奖(2013)等荣誉。研究成果在国际上产生重要影响,相关技术已被全球来自哈佛大学、斯坦福大学、麻省理工学院、牛津大学、剑桥大学及中国科学院等600多个实验室跟踪应用,典型技术应用发表于Science、Cell。
【研究方向】:
1、细胞代谢监测成像新技术开发
2、细胞代谢时空调控新机制研究
3、衰老及相关疾病(肿瘤、糖尿病、肥胖、心脑血管疾病等)即时诊断与创新药物开发
【研究生招生与博士后招聘】:
本实验室研究对象涉及基因、蛋白质、细菌、哺乳动物细胞、线虫、斑马鱼、果蝇、鼠、大动物和临床医学样本等,研究领域涉及医学、药学、药理学、细胞生物学、生物化学与分子生物学、合成生物学、光遗传学、化学遗传学、化学生物学等。我们热忱欢迎有志于从事细胞代谢研究、人类疾病诊断、创新药物开发的同学或博士加盟本实验室。
【代表性论文】(*通讯作者):
1. Li, R., Li, Y., Jiang, K., Zhang, L., Li, T., Zhao, A., Zhang, Z., Xia, Y., Ge, K., Chen, Y., Wang, C., Tang, W., Liu, S., Lin, X., Song, Y., Mei, J., Xiao, C., Wang, A., Zou, Y., Li, X., Chen, X., Ju, Z., Jia, W., Loscalzo, J., Sun, Y., Fang, W.*, Yang, Y.*, Zhao Y.*. Lighting up arginine metabolism reveals its functional diversity in physiology and pathology. Cell Metabolism, 2025, 37(1), 291-304 (Cover story).
2. Wang, A., Zou, Y., Liu, S., Zhang, X., Li, T., Zhang, L., Wang, R., Xia, Y., Li,X., Zhang, Z., Liu, T., Ju,Z., Wang, R.*, Loscalzo, J., Yang, Y.*, Zhao, Y.*. Comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo using highly responsive biosensors. Nature Protocols, 2024, 19(5), 1311-1347.
3. He, J., Wang, A., Zhao, Q., Zou, Y., Zhang, Z., Sha, N., Hou, G., Zhou, B., Yang, Y., Chen, T., Zhao, Y.*, Jiang, Y.*. RNAi screens identify HES4 as a regulator of redox balance supporting pyrimidine synthesis and tumor growth. Nature Structural & Molecular Biology, 2024, 31(9), 1413-1425.
4. Zhao, Y.*, Jiang, Y.*. HES4 controls redox balance and supports pyrimidine synthesis and tumor growth. Nature Structural & Molecular Biology, 2024, 31(9), 1315-1316.
5. Li, X., Zhang, Y., Xu, L., Wang, A., Zou, Y., Li, T., Huang, L., Chen, W., Liu, S., Jiang, K., Zhang, X., Wang, D., Zhang, L., Zhang, Z., Zhang, Z., Chen, X., Jia, W., Zhao, A., Yan, X., Zhou, H., Zhu, L., Ma, X., Ju, Z., Jia, W., Wang, C.*, Loscalzo, J., Yang, Y.*, Zhao, Y.*. Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease. Cell Metabolism, 2023, 35(1), 200-211.
6. Dou, X., Fu, D., Long, Q., Liu, S., Zou, Y., Fu, D., Xu, Q., Jiang Z., Ren, X., Zhang, G., Wei X., Li Q., Campisi, J., Zhao, Y.*, Sun Y.*. PDK4-dependent hypercatabolism and lactate production of senescent cells promotes cancer malignancy. Nature Metabolism, 2023, 5, 1887-1910.
7. Jia, M., Yue, X., Sun, W., Zhou, Q., Chang, C., Gong, W., Feng, J., Li, X., Zhan, R., Mo, K., Zhang, L., Qian, Y., Sun, Y., Wang, A., Zou, Y., Chen, W., Li, Y., Huang, L., Yang, Y.*, Zhao, Y.*, Cheng, X.*. ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. Science Advances, 2023, 9, eadg4993.
8. Huang, D., Zhang, C., Xiao, M., Li, X., Chen, W., Jiang, Y., Yuan, Y., Zhang, Y., Zou, Y., Deng, L., Wang, Y., Sun, Y., Dong, W., Zhang, Z., Xie, L., Yu, Z., Chen, C., Liu, L., Wang, J., Yang, Y.*, Yang, J.*, Zhao, Y.*, Zheng, J.*. Redox metabolism maintains the leukemogenic capacity and drug resistance of AML cells. PNAS, 2023, 120 (13), e2210796120.
9. Chen, C.*, Lai, X., Xie, L., Yu, Z., Dan, S., Jiang, Y., Chen, W., Liu, L., Yang, Y., Zhang, Y., Huang, D.*, Zhao, Y.*, Zheng J.*. NADPH metabolism determines the leukemogenic capacity and drug resistance of AML cells. Cell Reports, 2022, 39(1), 110607.
10. Ma, C., Zheng K., Jiang, K., Zhao, Q., Sha, N., Wang, W., Yan, M., Chen, T., Zhao, Y.*, Jiang, Y.*. The alternative activity of nuclear PHGDH contributes to tumor growth under nutrient stress. Nature Metabolism, 2021, 3(10), 1357-1371.
11. Chen, C., Hao X., Lai X., Liu L., Zhu J., Shao H., Huang D., Gu H., Zhang T., Yu Z., Xie L., Zhang X., Yang Y., Xu J.*, Zhao Y.*, Lu Z.*, Zheng J.*. Oxidative phosphorylation enhances the leukemogenic capacity and resistance to chemotherapy of B-cell acute lymphoblastic leukemia. Science Advances, 2021, 7, eabd6280.
12. Zou, Y., Wang, A., Huang, L., Zhu, X., Hu, Q., Zhang, Y., Chen, X., Li, F., Wang, Q., Wang, H., Liu, R., Zuo, F., Li, T., Yao, J., Qian, Y., Shi, M., Yue, X., Chen, W., Zhang, Z., Wang, C., Zhou, Y., Zhu, L., Ju, Z., Loscalzo, J., Yang, Y.*, Zhao, Y.*. Illuminating NAD+ metabolism in live cells and in vivo using a genetically encoded fluorescent sensor. Developmental Cell, 2020, 53(2), 240-252.
13. Gu, H., Chen, C., Hao, X., Su, N., Huang, Dan., Zou, Y., Lin, S., Chen, X., Zheng, D., Liu, L., Yu, Z., Xie, L., Zhang, Y., He, X., Lai, X., Zhang, X., Chen, G., Zhao, Y.*, Yang, Y.*, Loscalzo, J., Zheng, J.*. MDH1-mediated malate-aspartate NADH shuttle maintains the activity levels of fetal liver hematopoietic stem cells. Blood, 2020, 136 (5), 553-571.
14. Zou, Y., Wang, A., Shi, M., Chen, X., Liu, R., Li, T., Zhang, C., Zhang, Z., Zhu, L., Ju, Z., Loscalzo, J., Yang, Y.*, Zhao, Y.*. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nature Protocols, 2018, 13(10), 2362-2386.
15. Tao, R.#, Zhao, Y.#, Chu, H.#, Wang, A., Zhu, J., Chen, X., Zou, Y., Shi, M., Liu, R., Su, N., Du, J., Zhou, H., Zhu, L., Qian, X., Liu, H., Loscalzo, J., and Yang, Y. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nature Methods, 2017, 14(7), 720-728.
16. Zhao, Y., Wang, A., Zou, Y., Su, N., Loscalzo, J., and Yang, Y. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD+/NADH redox state. Nature Protocols, 2016, 11(8), 1345-1359 (Cover story).
17. Zhao, Y., Hu, Q., Cheng, F., Su, N., Wang, A., Zou, Y., Hu, H., Chen, X., Zhou, H., Huang, X.,Yang, K., Zhu, Q., Wang, X., Yi, J., Zhu, L., Qian, X., Chen, L., Tang, Y., Loscalzo, J., and Yang, Y. SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents. Cell Metabolism, 2015, 21(5), 777-789.
18. Zhao, Y., Jin, J., Hu, Q., Zhou, H.M., Yi, J., Yu, Z., Xu, L., Wang, X., Yang, Y., and Loscalzo, J. Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metabolism, 2011, 14(4), 555-566.
【综述著作】(*通讯作者):
1. Zhang, Z., Chen, C., Li, X., Zheng, J.*, Zhao, Y.*. Regulation of leukemogenesis via redox metabolism. Trends in Cell Biology, 2024, 34(11), 928-941.
2. Li, X.*, Wen, X., Tang, W., Wang, C., Chen, Y., Yang, Y., Zhang, Z.*, Zhao, Y.*. Elucidating the spatiotemporal dynamics of glucose metabolism with genetically encoded fluorescent biosensors. Cell Reports Methods, 2024, 4(11), 100904.
3. Consortium, A.B., Bao, H., Cao, J., Chen, M., Chen, M,, Chen, W., Chen, X., Chen, Y., Chen, Y., Chen, Y., Chen, Z., Chhetri, J., Ding, Y., Feng, J., Guo J., Guo M., He, C., Jia, Y., Jiang, H., Jing, Y., Li, D., Li, J., Li, J., Liang, Q., Liang, R., Liu, F., Liu, X., Liu, Z., Luo, O.J., Lv, J., Ma, J., Mao, K., Nie, J., Qiao, X., Sun, X., Tang, X., Wang, J., Wang, Q., Wang, S., Wang, X., Wang, Y., Wang, Y., Wu, R., Xia, K., Xiao, F., Xu, L., Xu, Y., Yan, H., Yang, L., Yang, R., Yang, Y., Ying, Y., Zhang, L., Zhang, W., Zhang, W., Zhang, X., Zhang, Z., Zhou, M., Zhou, R., Zhu, Q., Zhu, Z., Cao, F.*, Cao, Z.*, Chan, P.*, Chen, C.*, Chen, G.*, Chen, H.*, Chen, J.*, Ci, W.*, Ding, B.*, Ding, Q.*, Gao, F.*, Han, J.*, Huang, K.*, Ju, Z.*, Kong, Q.*, Li, Ji*, Li, J.*, Li, X.*, Liu, B.*, Liu, F.*, Liu, L.*, Liu, Q.*, Liu, Q.*, Liu, X.*, Liu, Y.*, Luo, X.*, Ma, S.*, Ma, X.*, Mao, Z.*, Nie, J.*, Peng, Y.*, Qu, J.*, Ren, J.*, Ren, R.*, Song, M.*, Songyang, Z.*, Sun, Y.*, Sun, Y.*, Tian, M.*, Wang, S.*, Wang, S.*, Wang, X.*, Wang, X.*, Wang, Y.*, Wang, Y.*, Wong, C.CL*, Xiang, A.P.*, Xiao, Y.*, Xie, Z.*, Xu, D.*, Ye, J.*, Yue, R.*, Zhang, C.*, Zhang, H.*, Zhang, L.*, Zhang, W.*, Zhang, Y.*, Zhang, Y.*, Zhang, Z.*, Zhao, T.*, Zhao, Y.*, Zhu, D.*, Zou, W.*, Pei, G.*, Liu, G.*. Biomarkers of aging. Science China Life Sciences, 2023, 66, 893-1066.
4. Ren J., Song M., Zhang W., Cai J., Cao F., Cao Z., Chan P., Chen C., Chen G., Chen H., Chen J., Chen X., Ci W., Ding B., Ding Q., Gao F., Gao S., Han J., He Q., Huang K., JuZ., Kong Q., Li J., Li J., Li J., Li X., Liu B., Liu F., Liu J., Liu L., Liu Q., Liu Q., Liu X., Liu Y., Luo X., Ma S., Ma X., Mao Z., Nie J., Peng Y., QuJ., Ren R., Song W., Songyang Z., Sun L., Sun Y.E., Sun Y., Tian M., Tian X., Tian Y., Wang J., Wang S., Wang S., Wang W., Wang X., Wang X., Wang Y., Wang Y., Wong C., Xiang A.P., Xiao Y., Xiao Z., Xie Z., Xiong W., Xu D., Yang Z., Ye J., Yu W., Yue R., Zhang C., Zhang H., Zhang L., Zhang X., Zhang Y., Zhang Y., Zhang Z., Zhao T., Zhao Y., Zhou Z., Zhu D., Zou W., Pei G., Liu G. The Aging Biomarker Consortium represents a new era for aging research in China. Nature Medicine, 2023, 29, 2162–2165.
5. Chen, W., Liu, S., Yang, Y., Zhang, Z.*, Zhao, Y.*. Spatiotemporal Monitoring of NAD+ Metabolism with Fluorescent Biosensors. Mechanisms of Ageing and Development, 2022, 204, 111657.
6. Li, T., Zou, Y., Liu, S., Yang, Y., Zhang, Z.*, Zhao, Y.*. Monitoring NAD(H) and NADP(H) dynamics during organismal development with genetically encoded fluorescent biosensors. Cell Regeneration, 2022, 11, 5.
7. Zhang, Z., Cheng, X., Zhao, Y.*, Yang, Y.*. Lighting up live-cell and in vivo central carbon metabolism with genetically encoded fluorescent sensors. Annual Review of Analytical Chemistry, 2020, 13, 293-314.
8. Zhang,Z., Chen, W., Zhao, Y.*, Yang, Y.*. Spatiotemporal imaging of cellular energy metabolism with genetically-encoded fluorescent sensors in brain. Neuroscience Bulletin, 2018, 34(5), 875-886.
9. Zhao, Y.*, Zhang,Z., Zou, Y., Yang, Y.*. Visualization of nicotine adenine dinucleotide redox homeostasis with genetically encoded fluorescent sensors, Antioxidants & Redox Signaling, 2018, 28(3), 213-229.
10. Zhao, Y.*, Zhang,Z., Yang, Y.*. Monitoring intracellular redox metabolism with genetically encoded fluorescent sensors. Scientia Sinica Vitae, 2017, 47:508-521.
11. Zhao, Y.*, Yang, Y.*. Real-time and high-throughput analysis of mitochondrial metabolic states in living cells using genetically encoded NAD+/NADH sensors. Free Radical Biology & Medicine, 2016, 100, 43-52.
12. Zhao, Y., Yang, Y.*. Profiling metabolic states with genetically encoded fluorescent biosensors for NADH. Current Opinion in Biotechnology, 2015, 31, 86-92.
13. Zhao, Y., Yang, Y., and Loscalzo, J.Real-Time Assessment of the Metabolic Profile of Living Cells with Genetically Encoded NADH Sensors. Methods in Enzymology, 2014, 542, 349-367. (ISBN:978-0-12-416618-9)
【部分合作论文】:
1. Zuo F, Jiang L, Su N, Zhang Y, BaoB, Wang L, Shi Y, Yang H, Huang X, Li R, Zeng Q, Chen Z, Lin Q, Zhuang Y, Zhao Y, Chen X, Zhu L, Yang Y. Imaging the dynamics of messenger RNA with a bright and stable green fluorescent RNA. Nature Chemical Biology, 2024, 20(10), 1272-1281.
2. Zou J, Jiang K, Chen Y, Ma Y, Xia C, Ding W, Yao M, Lin Y, Chen Y, Zhao Y*, Gao F*. Tofacitinib citrate coordination-based dual-responsive/scavenge nanoplatform toward regulate colonic inflammatory microenvironment for relieving colitis. Advanced Healthcare Materials, 2024, 2401869.
3. Bai L, Wang Y, Wang K, Chen X, Zhao Y, Liu C, Qu X. Materiobiomodulated ROS therapy for de novo hair growth. Advanced Materials, 2024, 36, 2311459.
4. Weng L, Tang W, Wang X, Gong Y, Liu C, Hong N, Tao Y, Li K, Liu S, Jiang W, Li Y, Yao K, Chen L, Huang H, Zhao Y, Hu Z, Lu Y, Ye H, Du X, Zhou H, Li P, Zhao T. Surplus fatty acid synthesis increases oxidative stress in adipocytes and induces lipodystrophy. Nature Communications, 2024, 15, 133.
5. Li J, Hou W, Zhao Q, Han W, Cui H, Xiao S, Zhu L, Qu J, Liu X, Cong W, Shen J, Zhao Y, Gao S, Huang G, Kong Q. Lactate regulates major zygotic genome activation by H3K18 lactylation in mammals. National Science Review, 2024, 11, nwad295.
6. Jiang L, Xie X, Su N, Zhang D, Chen X, Xu X, Zhang B, Huang K, Yu J, Fang M, Bao B, Zuo F, Yang L, Zhang R, Li H, Huang X, Chen Z, Zeng Q, Liu R, Lin Q, Zhao Y, Ren A, Zhu L, Yang Y. Large Stokes shift fluorescent RNAs for dual-emission fluorescence and bioluminescence imaging in live cells. Nature Methods, 2023, 20, .
7. Zhang D., Chen Z., Du Z., Bao B., Su N., Chen X., Ge Y., Lin Q., Yang L., Hua Y., Wang S., Hua X., Zuo F., Li N., Liu R., Jiang L., Bao C., Zhao Y., Loscalzo J., Yang Y., Zhu L. Design of a palette of SNAP-tag mimics of fluorescent proteins and their use as cell reporters. Cell Discovery, 2023, 9, 56.
8. Sun H., Zhang Z., Li T., Li Ting, Chen W., Pan T., Fang S., Liu C., Zhang Y., Wang L., Feng G., Li W., Zhou Q.*, Zhao Y.*. Live-cell imaging reveals redox metabolic reprogramming during zygotic genome activation. Journal of Cellular Physiology, 2023, 238(9), 2039-2049.
9. He M., Sun Yu., Cheng Y., Wang J., Zhang M., Sun R., Hou X., Xu J., He H., Wang H., Yuan Z., Lan M., Zhao Y., Yang Y., Chen X., Gao F. Spatiotemporally controllable diphtherin transgene system and neoantigen immunotherapy. Journal of Controlled Release, 2023, 355, 538-551
10. Fang M., Li H., Xie X., Wang H., Jiang Y., Li T., Zhang B., Jiang X., Cao Y., Zhang R., Zhang D., Zhao Y., Zhu L., Chen X., Yang Y. Imaging intracellular metabolite and protein changes in live mammalian cells with bright fluorescent RNA-based genetically encoded sensors. Biosensors and Bioelectronics, 2023, 235, 115411.
11. Liu, R., Yang, J., Yao, J., Zhao, Z., He, W., Su, N., Zhang, Z., Zhang, C., Zhang, Z., Cai, H., Zhu, L., Zhao, Y., Quan, S., Chen, X., Yang. Y. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding protein. Nature Biotechnology, 2022, 40, 779-786.
12. Zhao J., Yao K., Yu H., Zhang L., Xu Y., Chen L., Sun Z., Zhu Y., Zhang C., Qian Y., Ji S., Pan H., Zhang M., Chen J., Correia C., Weiskittel T., Lin D. W., Zhao Y., Chandrasekaran S., Fu X., Zhang D., Fan H. Y., Xie W., Li H., Hu Z., Zhang J. Metabolic remodelling during early mouse embryo development. Nature Metabolism, 2021, 3, 1372-1384.
13. He X., Wan J., Yang X., Zhang X., Huang D., Li X., Zou Y., Chen C., Yu Z., Xie L., Zhang Y., Liu L., Li S., Zhao Y., Shao H., Yu Y., Zheng J. Bone marrow niche ATP levels determine leukemia-initiating cell activity via P2X7 in leukemic models. Journal of Clinical Investigation, 2021, 131(4), e140242.
14. Li T., Chen X., Qian Y., Shao J., Li X., Liu S, Zhu L., Zhao Y., Ye H., Yang. Y. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nature Communications, 2021, 12, 615.
15. Liu, K., Guo, C., Lao, Y., Yang, J., Chen, F., Zhao, Y., Yang, Y., Yang, J., Yi, J. A fine-tuning mechanism underlying self- control for autophagy: deSUMOylation of BECN1 by SENP3. Autophagy, 2020, 16(6), 975-990.
16. Li, X., Zhang, C., Xu, X., Miao, J., Yao, J., Liu, R., Zhao, Y., Chen, X., Yang Y. A single-component light sensor system allows highly tunable and direct activation of gene expression in bacterial cells. Nucleic Acids Research, 2020, 48(6), e33.
17. Chen, X., Zhang, D., Su, N., Bao, B., Xie, X. , Zuo, F., Yang, L., Wang, H., Jiang, L., Lin, Q., Fang, M., Li, N., Hua, X., Chen, Z., Bao, C., Xu, J., Du, W., Zhang, L., Zhao, Y., Zhu, L., Loscalzo, J., Yang, Y. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nature Biotechnology, 2019, 37(11), 1287-1293.
18. Hao, X., Gu, H., Chen, C., Huang, D., Zhao, Y., Xie, L., Zou, Y., Shu, H., Zhang, Y., He, X., Lai, X., Zhang, X., Zhou, B., Zhang, C., Chen, G., Yu, Z., Yang, Y., Zheng, J. Metabolic imaging reveals a unique preference of symmetric cell division and homing of leukemia-Initiating cells in an endosteal niche. Cell Metabolism, 2019, 29(4), 950-965.
19. Cheng, F., Lu, W., Liu, C., Fang, J., Hou, Y., Handy, D., Wang, R., Zhao, Y., Yang, Y., Huang, J., Hill, D., Vidal, M., Eng, C., Loscalzo, J. A genome-wide positioning systems network algorithm for in silico drug repurposing. Nature Communications, 2019, 10, 3476.
20. Zhu, X., Shen, W., Yao, K., Wang, H., Liu B., Li, T., Song, L., Diao, D., Mao, G., Huang, P., Li, C., Zhang, H., Zou, Y., Qiu, Y., Zhao, Y., Wang, W., Yang, Y., Hu, Z., Auwerx, J., Loscalzo, J., Zhou, Y., Ju, Z. Fine-tuning of PGC1α expression regulates cardiac function and longevity. Circulation Research, 2019, 125(7), 707-719.
21. Liu, X., Zhang, F., Zhang, Y., Li, X., Chen, C., Zhou, M., Yu. Z., Liu, Y., Zhao, Y., Hao, X., Tang, Y., Zhu, L., Liu, L., Xie, L., Gu, H., Shao, H., Xia, F., Yin, C., Tao, M., Xie, J., Zhang, C., Yang, Y., Sun, H., Chen, G., Zheng, J. PPM1K regulates hematopoiesis and leukemogenesis through CDC20-mediated ubiquitination of MEIS1 and p21. Cell Reports, 2018, 23, 1461-1475.
22. Chen, X., Tian, M., Sun, R., Zhang, M., Zhou, L., Jin, L., Chen, L., Zhou, W., Duan, K., Chen, Y., Gao, C., Cheng, Z., Wang, F., Zhang, J., Sun, Y., Yu, H., Zhao, Y., Yang, Y., Liu, W., Shi, Y., Xiong, Y., Guan, K., and Ye, D. SIRT5 inhibits peroxisomal ACOX1 to prevent oxidative damage and is downregulated in liver cancer. EMBO Reports, 2018, e45124.
23. Fang, Y., Liu, Z., Chen, Z., Xu, X., Xiao, M., Yu, Y., Zhang, Y., Zhang, X., Du, Y., Jiang, C., Zhao, Y., Wang, Y., Fan, B., Terheyden-Keighley, D., Liu, Y., Shi, L., Hui, Y., Zhang, X., Zhang, B., Feng, H., Ma, L., Zhang, Q., Jin, G., Yang, Y., Xiang, B., Liu, L., Zhang, X. Smad5 acts as an intracellular pH messenger and maintains bioenergetic homoeostasis. Cell Research, 2017, 27, 1083-1099.
24. Yang, K., Wang, M., Zhao, Y., Sun, X., Yang, Y., Li, X., Zhou, A., Chu, H., Zhou, H., Xu, J., Wu, M., Yang, J., and Yi, J. A redox mechanism underlying nucleolar stress sensing by nucleophosmin. Nature Communications, 2016, 7, 13599.
25. Yang, H., Zhou, L., Shi, Q., Zhao, Y., Lin, H., Zhang, M., Zhao, S., Yang, Y., Ling, Z., Guan, K., Xiong, Y., and Ye, D. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. EMBO Journal, 2015, 34, 1110-1125.
26. Wang, Y., Zhou, L., Zhao, Y., Wang, S., Chen, L., Liu, L., Ling, Z., Hu, F., Sun, Y., Zhang, J., Yang, C., Yang, Y., Xiong, Y., Guan, K., and Ye, D. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO Journal, 2014, 33, 1304–1320.
地址:上海市徐汇区梅陇路130号 邮编:200237
版权所有 © 2023 华东理工大学药学院 |